130 research outputs found

    Translation of tissue-based artificial intelligence into clinical practice: from discovery to adoption.

    Get PDF
    Digital pathology (DP), or the digitization of pathology images, has transformed oncology research and cancer diagnostics. The application of artificial intelligence (AI) and other forms of machine learning (ML) to these images allows for better interpretation of morphology, improved quantitation of biomarkers, introduction of novel concepts to discovery and diagnostics (such as spatial distribution of cellular elements), and the promise of a new paradigm of cancer biomarkers. The application of AI to tissue analysis can take several conceptual approaches, within the domains of language modelling and image analysis, such as Deep Learning Convolutional Neural Networks, Multiple Instance Learning approaches, or the modelling of risk scores and their application to ML. The use of different approaches solves different problems within pathology workflows, including assistive applications for the detection and grading of tumours, quantification of biomarkers, and the delivery of established and new image-based biomarkers for treatment prediction and prognostic purposes. All these AI formats, applied to digital tissue images, are also beginning to transform our approach to clinical trials. In parallel, the novelty of DP/AI devices and the related computational science pipeline introduces new requirements for manufacturers to build into their design, development, regulatory and post-market processes, which may need to be taken into account when using AI applied to tissues in cancer discovery. Finally, DP/AI represents challenge to the way we accredit new diagnostic tools with clinical applicability, the understanding of which will allow cancer patients to have access to a new generation of complex biomarkers

    cudaMap: a GPU accelerated program for gene expression connectivity mapping

    Get PDF
    BACKGROUND: Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. RESULTS: cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. CONCLUSION: Emerging ‘omics’ technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap

    Clinically Actionable Insights into Initial and Matched Recurrent Glioblastomas to Inform Novel Treatment Approaches

    Get PDF
    © 2019 H. P. Ellis et al. Glioblastoma is the most common primary adult brain tumour, and despite optimal treatment, the median survival is 12-15 months. Patients with matched recurrent glioblastomas were investigated to try to find actionable mutations. Tumours were profiled using a validated DNA-based gene panel. Copy number variations (CNVs) and single nucleotide variants (SNVs) were examined, and potentially pathogenic variants and clinically actionable mutations were identified. The results revealed that glioblastomas were IDH-wildtype (IDHWT; n = 38) and IDH-mutant (IDHMUT; n = 3). SNVs in TSC2, MSH6, TP53, CREBBP, and IDH1 were variants of unknown significance (VUS) that were predicted to be pathogenic in both subtypes. IDHWT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, WNT, SHH, NOTCH, Rb, and G-protein pathways. Many tumours had BRCA1/2 (18%) variants, including confirmed somatic mutations in haemangioblastoma. IDHWT recurrent tumours had fewer pathways impacted (RTK/Ras/PI(3)K, p53, WNT, and G-protein) and CNV gains (BRCA2, GNAS, and EGFR) and losses (TERT and SMARCA4). IDHMUT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, and WNT pathways. VUS in KLK1 was possibly pathogenic in IDHMUT. Recurrent tumours also had fewer pathways (p53, WNT, and G-protein) impacted by genetic alterations. Public datasets (TCGA and GDC) confirmed the clinical significance of findings in both subtypes. Overall in this cohort, potentially actionable variation was most often identified in EGFR, PTEN, BRCA1/2, and ATM. This study underlines the need for detailed molecular profiling to identify individual GBM patients who may be eligible for novel treatment approaches. This information is also crucial for patient recruitment to clinical trials

    Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer.

    Get PDF
    BACKGROUND: Hypoxia is associated with a poor prognosis in prostate cancer. This work aimed to derive and validate a hypoxia-related mRNA signature for localized prostate cancer. METHOD: Hypoxia genes were identified in vitro via RNA-sequencing and combined with in vivo gene co-expression analysis to generate a signature. The signature was independently validated in eleven prostate cancer cohorts and a bladder cancer phase III randomized trial of radiotherapy alone or with carbogen and nicotinamide (CON). RESULTS: A 28-gene signature was derived. Patients with high signature scores had poorer biochemical recurrence free survivals in six of eight independent cohorts of prostatectomy-treated patients (Log rank test P \u3c .05), with borderline significances achieved in the other two (P \u3c .1). The signature also predicted biochemical recurrence in patients receiving post-prostatectomy radiotherapy (n = 130, P = .007) or definitive radiotherapy alone (n = 248, P = .035). Lastly, the signature predicted metastasis events in a pooled cohort (n = 631, P = .002). Prognostic significance remained after adjusting for clinic-pathological factors and commercially available prognostic signatures. The signature predicted benefit from hypoxia-modifying therapy in bladder cancer patients (intervention-by-signature interaction test P = .0026), where carbogen and nicotinamide was associated with improved survival only in hypoxic tumours. CONCLUSION: A 28-gene hypoxia signature has strong and independent prognostic value for prostate cancer patients

    Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer

    Get PDF
    c-MET and its ligand HGF are frequently overexpressed in colorectal cancer (CRC) and increased c-MET levels are found in CRC liver metastases. This study investigated the role of the HGF/c-MET axis in regulating migration/invasion in CRC, using pre-clinical models and clinical samples. Pre-clinically, we found marked upregulation of c-MET at both protein and mRNA levels in several invasive CRC cells. Down-regulation of c-MET using RNAi suppressed migration/invasion of parental and invasive CRC cells. Stimulation of CRC cells with rh-HGF or co-culture with HGF-expressing colonic myofibroblasts, resulted in significant increases in their migratory/invasive capacity. Importantly, HGF-induced c-MET activation promoted rapid downregulation of c-MET protein levels, while the MET transcript remained unaltered. Using RNA in situ hybridization (RNA ISH), we further showed that MET mRNA, but not protein levels, were significantly upregulated in tumor budding foci at the invasive front of a cohort of stage III CRC tumors (p < 0.001). Taken together, we show for the first time that transcriptional upregulation of MET is a key molecular event associated with CRC invasion and tumor budding. This data also indicates that RNA ISH, but not immunohistochemistry, provides a robust methodology to assess MET levels as a potential driving force of CRC tumor invasion and metastasis

    KRAS mutant colorectal cancer gene signatures identified angiotensin II receptor blockers as potential therapies

    Get PDF
    Colorectal cancer (CRC) is a life-threatening disease with high prevalence and mortality worldwide. The KRAS oncogene is mutated in approximately 40% of CRCs. While antibody based EGFR inhibitors (cetuximab and panitumumab) represent a major treatment strategy for advanced KRAS wild type (KRAS-WT) CRCs, there still remains no effective therapeutic course for advanced KRAS mutant (KRAS-MT) CRC patients.In this study, we employed a novel and comprehensive approach of gene expression connectivity mapping (GECM) to identify candidate compounds to target KRAS-MT tumors. We first created a combined KRAS-MT gene signature with 248 ranked significant genes using 677 CRC clinical samples. A series of 248 sub-signatures was then created containing an increasing number of the top ranked genes. As an input to GECM analysis, each sub-signature was translated into a statistically significant therapeutic drugs list, which was finally combined to obtain a single list of significant drugs.We identify four antihypertensive angiotensin II receptor blockers (ARBs) within the top 30 significant drugs indicating that these drugs have a mechanism of action that can alter the KRAS-MT CRC oncogenic signaling. A hypergeometric test (p-value = 6.57 × 10-6) confirmed that ARBs are significantly enriched in our results. These findings support the hypothesis that ARB antihypertensive drugs may directly block KRAS signaling resulting in improvement in patient outcome or, through a reversion to a KRAS wild-type phenotype, improve the response to anti-EGFR treatment. Antihypertensive angiotensin II receptor blockers are therefore worth further investigation as potential therapeutic candidates in this difficult category of advanced colorectal cancers

    Behavioural evidence for self-medication in bumblebees?

    Get PDF
    The presence of antimicrobial secondary metabolites in nectar suggests that pollinators, which are threatened globally by emergent disease, may benefit from the consumption of nectars rich in these metabolites. We tested whether nicotine, a nectar secondary metabolite common in Solanaceae and Tilia species, is used by parasitized bumblebees as a source of self-medication , using a series of toxicological, microbiological and behavioural experiments. Caged bees infected with Crithidia bombi had a slight preference for sucrose solution laced with the alkaloid and behavioural tests showed that the parasite infection induced an increased consumption of nicotine during foraging activity, though nicotine had an appetite-reducing effect overall. When ingested, nicotine delayed the progression of a gut infection in bumblebees by a few days, but dietary nicotine did not clear the infection, and after 10 days the parasite load approached that of control bees. Moreover, when pathogens were exposed to the alkaloid prior to host ingestion, the protozoan's viability was not directly affected, suggesting that anti-parasite effects were relatively weak. Nicotine consumption in a single dose did not impose any cost even in starved bees but the alkaloid had detrimental effects on healthy bees if consistently consumed for weeks. These toxic effects disappeared in infected bees, suggesting that detoxification costs might have been counterbalanced by the advantages in slowing the progression of the infection. Nicotine consumption did not affect bee lifespan but the reduction in the parasite load may have other likely unexplored subtle benefits both for individual bees and their colony.  Potential evidence for self-medication is discussed. The contention that secondary metabolites in nectar may be under selection from pollinators, or used by plants to enhance their own reproductive success, remains to be confirmed.D.B. was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programm
    • …
    corecore